[Có đáp án] Bài tập về hằng đẳng thức nâng cao (Lớp 8)

[Có đáp án] Bài tập về hằng đẳng thức nâng cao (Lớp 8)

Mời các bạn xem danh sách tổng hợp Các bài tập về hằng đẳng thức hay nhất và đầy đủ nhất

Video Các bài tập về hằng đẳng thức

Những bài tập hằng đẳng thức nâng cao được tổng hợp dưới bài viết sẽ giúp các bạn học sinh luyện tập các dạng bài tập liên quan đến đơn thức với đa thức và phép nhân đa thức với đa thức. Qua đó giúp các em học sinh ôn tập, củng cố và rèn luyện thêm kiến thức đã học trong chương trình Toán 8!

Một số bài tập về hằng đẳng thức nâng cao

Bài 1: Sử dụng 7 hằng đẳng thức Viết các biểu thức sau dưới dạng tổng

  • (2x + 1)²

  • (2x + 3y)²

  • (x + 1)(x – 1)

  • m² – n²

  • (5x + 3yz)²

  • (yx – 3ab)²

  • (x² + 3)(xˆ4 + 9 – 3x²)

  • (9x + 3)²

  • (xy + 2yz)²

Lời giải

  • (2x+1)² = 4x²+ 4x +1

  • (2x+3y)² = 4x² + 2.2x.3y + 9y² = 4x² + 12x.y + 9y²

  • (x+1)(x-1) = x²-1

  • m² – n² = (m – n)(m + n)

  • (5x+3yz)² = 25x² + 2.5x.3yz + 9y²z² = 25x² + 30xyz + 9y²z²

  • (yx – 3ab)² = y²z² – 2.yx.3ab + 9a²b²

  • (x²+3)(xˆ4 + 9 – 3x²) = (x²)² + 3³ = x]xˆ4+27

  • (9x+3)² = 81x² + 54x + 9

  • (xy+2yz)² =x²y² + 2.xy.2yz + 4y²z² = x²y² +4xy² z + 4y² z²

Bài tập hằng đẳng thức nâng cao

Hằng đẳng thức nâng cao

Bài 2: Sử Dụng 7 hằng đẳng thức đáng nhớ và rút gọn biểu thức sau:

  1. A=(x+y)² – (x-y)²

– Cách 1: Khai triển từng hằng số trong biểu thức B bằng hằng đẳng thức

(A ± B)² = A² ± 2AB+B²

A = (x+y)² – (x-y)² = x² + 2xy + y² – (x² – 2xy + y²) = 4xy

– Cách 2: Sử dụng hằng đẳng thức A²-B = (A + B)(A – B)

A=(x+y)² – (x-y)² = (x+y+x-y)(x+y-x+y) = 2x.2y = 4xy

  1. B = (x+y)² – 2(x+y)(x-y) + (x-y)²

– Cách 1: Khai triển từng hằng số trong biểu thức B bằng hằng đẳng thức

(A ± B)² = A² ± 2AB+B²

B = (x+y)² – 2(x+y)(x-y) + (x-y)² = x² + 2xy + y² – 2x² + 2y² + x² – 2xy + y² = 4y²

– Cách 2:

B = (x+y)² – 2(x+y)(x-y) + (x-y)² = (x + y – x + y)² = (2y)² = 4y²

Bài 3: Tính nhanh các biểu thức sau

  1. 153² + 94.153 + 47²

  2. Xem thêm: NaHCO3 có lưỡng tính không? Tính chất hóa học của NaHCO3

    126² – 126.152 + 5776

Lời giải:

  1. 153² + 94.153 + 47² = 153² + 2.47.153 + 47² = (153+47)² = 200² = 40000

  2. 126² – 126.152 + 5776 = 126² – 2.126.76 + 76² = (126-76)² = 50²

Xem thêm  Cắt tóc ngày nào tốt? Chọn ngày cắt tóc cho Nam, Nữ tháng 04/2023

Bài 4: Tính:

a, (x + 2y)2

b, (x – 3y)(x + 3y)

c, (5 – x)2

Lời giải:

a, (x + 2y)2 = x2 + 4xy + 4y2

b, (x – 3y)(x + 3y) = x2 – (3y)2 = x2 – 9y2

c, (5 – x)2 = 52 – 10x + x2 = 25 – 10x + x2

Bài 5: Tính:

a, (x – 1)2

b, (3 – y)2

c, (x – 1/2)2

Lời giải:

a, (x – 1)2 = x2 -2x + 1

b, (3 – y)2 = 9 – 6y + y2

c, (x – 1/2)2 = x2 – x + 1/4

Bài tập hằng đẳng thức nâng cao

Bài tập hằng đẳng thức

Bài 6: Viết các biểu thức sau dưới dạng bình phương một tổng:

a, x2 + 6x + 9

b, x2 + x + 1/4

c,2xy2 + x2y4 + 1

Lời giải:

a, x2 + 6x + 9 = x2 + 2.x.3 + 32 = (x + 3)2

b, x2 + x + 1/4 = x2 + 2.x.1/2 + (1/2 )2 = (x + 1/2)2

c, 2xy2 + x2y4 + 1 = (xy2)2 + 2.xy2.1 + 12 = (xy2 + 1)2

Bài 7: Rút gọn biểu thức:

a, (x + y)2 + (x – y)2

Xem thêm: Giải bài 19, 20, 21, 22 trang 68 Sách giáo khoa toán 8 tập 2

b, 2(x – y)(x + y) + (x + y)2 + (x – y)2

c, (x – y + z)2 + (z – y)2 + 2(x – y + z)(y – z)

Lời giải:

a, (x + y)2 + (x – y)2

= x2 + 2xy + y2 + x2 – 2xy + y2

= 2×2 + 2y2

Xem thêm: Giải bài 19, 20, 21, 22 trang 68 Sách giáo khoa toán 8 tập 2

b, 2(x – y)(x + y) + (x + y)2 + (x – y)2

= [(x + y) + (x – y)]2 = (2x)2 = 4×2

c, (x – y + z)2 + (z – y)2 + 2(x – y + z)(y – z)

= (x – y + z)2 + 2(x – y + z)(y – z) + (y – z)2

= [(x – y + z) + (y – z)]2 = x2

Bài 8: Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1.

Lời giải:

Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)

Ta có: a2 = (5k + 4)2

= 25k2 + 40k + 16

= 25k2 + 40k + 15 + 1

= 5(5k2 + 8k +3) +1

Ta có: 5(5k2 + 8k + 3) ⋮ 5

Vậy a2 = (5k + 4)2 chia cho 5 dư 1.

Bài 9: Tính giá trị của biểu thức sau:

a, x2 – y2 tại x = 87 và y = 13

b, x3 – 3×2 + 3x – 1 tại x = 101

c, x3 + 9×2+ 27x + 27 tại x = 97

Xem thêm  50 bài tập về lập phương trình hóa học (có đáp án 2022) - Hoá học 8

Lời giải:

a, Ta có: x2 – y2 = (x + y)(x – y)

b, Thay x = 87, y = 13, ta được:

x2 – y2 = (x + y)(x – y)

= (87 + 13)(87 – 13)

= 100.74 = 7400

c, Ta có: x3 + 9×2 + 27x + 27

= x3 + 3.x2.3 + 3.x.32 + 33

= (x + 3)3

Thay x = 97, ta được: (x + 3)3 = (97 + 3)3 = 1003 = 1000000

Bài 10: Chứng minh rằng:

a, (a + b)(a2 – ab + b2) + (a – b)(a2 + ab + b2) = 2a3

b, (a + b)[(a – b)2 + ab] = (a + b)[a2 – 2ab + b2 + ab] = a3 + b3

c, (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad – bc)2

Lời giải:

a, Ta có: (a + b)(a2 – ab + b2) + (a – b)(a2 + ab + b2) = a3 + b3 + a3 – b3 = 2a3

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b, Ta có: (a + b)[(a – b)2 + ab] = (a + b)[a2 – 2ab + b2 + ab]

= (a + b)(a2 – 2ab + b2) = a3 + b3

Vế phải bằng vế trái nên đẳng thức được chứng minh.

Xem thêm: Đô thị hoá là gì? Quá trình & những ảnh hưởng của đô thị hóa

c, Ta có: (ac + bd)2 + (ad – bc)2

= a2c2 + 2abcd + b2d2 + a2d2 – 2abcd + b2c2

= a2c2 + b2d2 + a2d2 + b2c2 = c2(a2 + b2) + d2(a2 + b2)

= (a2 + b2)(c2 + d2)

Vế phải bằng vế trái nên đẳng thức được chứng minh.

Bài 11: Chứng tỏ rằng:

a, x2 – 6x + 10 > 0 với mọi x

b, 4x – x2 – 5 < 0 với mọi x

Lời giải:

a, Ta có: x2 – 6x + 10 = x2 – 2.x.3 + 9 + 1 = (x – 3)2 + 1

Vì (x – 3)2 ≥ 0 với mọi x nên (x – 3)2 + 1 > 0 mọi x

Vậy x2 – 6x + 10 > 0 với mọi x.

b, Ta có: 4x – x2 – 5 = -(x2 – 4x + 4) – 1 = -(x – 2)2 -1

Vì (x – 2)2 ≥ 0 với mọi x nên -(x – 2)2 ≤ 0 với mọi x.

Suy ra: -(x – 2)2 -1 ≤ 0 với mọi x

Vậy 4x – x2 – 5 < 0 với mọi x.

Bài 12: Tìm giá trị nhỏ nhất của các đa thức:

a, P = x2 – 2x + 5

b, Q = 2×2 – 6x

c, M = x2 + y2 – x + 6y + 10

Lời giải:

a, Ta có: P = x2 – 2x + 5 = x2 – 2x + 1 + 4 = (x – 1)2 + 4

Xem thêm  Già làng là gì? Vai trò của già làng - THPT Lê Hồng Phong

Vì (x – 1)2 ≥ 0 nên (x – 1)2 + 4 ≥ 4

Suy ra: P = 4 là giá trị bé nhất ⇒ (x – 1)2 = 0 ⇒ x = 1

Vậy P = 4 là giá trị bé nhất của đa thức khi x = 1.

b, Ta có: Q = 2×2 – 6x = 2(x2 – 3x) = 2(x2 – 2.3/2 x + 9/4 – 9/4 )

= 2[(x – 2/3 ) – 9/4 ] = 2(x – 2/3 )2 – 9/2

Vì (x – 2/3 )2 ≥ 0 nên 2(x – 2/3 )2 ≥ 0 ⇒ 2(x – 2/3 )2 – 9/2 ≥ – 9/2

Suy ra: Q = – 9/2 là giá trị nhỏ nhất ⇒ (x – 2/3 )2 = 0 ⇒ x = 2/3

Vậy Q = – 9/2 là giá trị nhỏ nhất của đa thức khi x = 2/3 .

c, Ta có: M = x2 + y2 – x + 6y + 10 = (y2 + 6y + 9) + (x2 – x + 1)

= (y + 3)2 + (x2 – 2.1/2 x + 1/4 + 3/4) = (y + 3)2 + (x – 1/2)2 + 3/4

Vì (y + 3)2 ≥ 0 và (x – 1/2)2 ≥ 0 nên (y + 3)2 + (x – 1/2)2 ≥ 0

⇒ (y + 3)2 + (x – 12)2 + 3/4 ≥ 3/4

⇒ M = 3/4 là giá trị nhỏ nhất khi (y + 3)2 =0

⇒ y = -3 và (x – 1/2)2 = 0 ⇒ x = 1/2

Vậy M = 3/4 là giá trị nhỏ nhất tại y = -3 và x = 1/2

Hy vọng rằng với những ví dụ và các bài tập về hằng đẳng thức trên đây sẽ giúp cho bạn có một kiến thức nền vững chãi cho môn Toán nói chung và phần hằng đẳng thức nói riêng.

Bản quyền nội dung thuộc wonderkidsmontessori.edu.vn

Bài viết liên quan

Tri Thức Cộng Đồng chuyên viết luận văn thạc sĩ tiếng Anh
Học Viện PMS – Đơn vị đào tạo 5S-Kaizen mang tính thực tiễn cao
Cách chỉnh độ rộng của dòng và cột trong word
Cách chỉnh độ rộng của dòng và cột trong word
Từ điển Thành ngữ Tiếng Việt – em ngã, chị nâng là gì?
Từ điển Thành ngữ Tiếng Việt – em ngã, chị nâng là gì?
Vật Lí 8 Bài 20: Nguyên tử, phân tử chuyển động hay đứng yên?
Vật Lí 8 Bài 20: Nguyên tử, phân tử chuyển động hay đứng yên?
Bảng chữ cái Tiếng Thái – Gia sư Tâm Tài Đức
Bảng chữ cái Tiếng Thái – Gia sư Tâm Tài Đức
Bộc trực là gì? 6 biểu hiện của người có tính bộc trực – CareerLink
Bộc trực là gì? 6 biểu hiện của người có tính bộc trực – CareerLink
Danh sách các trường THCS ở Hà Nội nên cho con học
Danh sách các trường THCS ở Hà Nội nên cho con học