Bài 16, 17, 18, 19, 20, 21, 22, 23 trang 159 SBT Toán 9 Tập 1

Bài 16, 17, 18, 19, 20, 21, 22, 23 trang 159 SBT Toán 9 Tập 1

Duới đây là các thông tin và kiến thức về Bài 16 sbt toán 9 tập 1 hay nhất được tổng hợp bởi chúng tôi

Video Bài 16 sbt toán 9 tập 1

Bài 16, 17, 18, 19, 20, 21, 22, 23 trang 159 SBT Toán 9 Tập 1

Bài 16 trang 159 Sách bài tập Toán 9 Tập 1: Tứ giác ABCD có ∠A = ∠D = 90o

a. Chứng minh rằng bốn điêm A, B, C, D cùng thuộc một đường tròn

b. So sánh độ dài AC và BD. Nếu AC = BD thì tứ giác ABCD là hình gì?

Lời giải:

a. Gọi M là trung điểm của AC

Tam giác ABC vuông tại B có BM là đường trung tuyến nên:

BM = (1/2).AC (tính chất tam giác vuông)

Tam giác ACD vuông tại D có DM là đường trung tuyến nên:

DM = (1/2).AC (tính chất tam giác vuông)

Suy ra: MA = MB = MC = MD

Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn tâm M bán kính bằng (1/2).AC.

b. Trong đường tròn tâm M ta có BD là dây cung không đi qua tâm, AC là đường kính nên: BD < AC

AC = BD khi và chỉ khi BD là đường kính. Khi đó tứ giác ABCD là hình chữ nhật.

Bài 17 trang 159 Sách bài tập Toán 9 Tập 1: Cho nửa đường tròn tâm O, đường kính AB và dây EF không cắt đường kính. Gọi I và K lần lượt là chân các đường vuông góc kẻ từ A và B đên EF. Chứng minh rằng IE = KF.

Lời giải:

Ta có: AI ⊥ EF (gt)

BK ⊥ EF (gt)

Suy ra: AI // BK

Suy ra tứ giác ABKI là hình thang

Kẻ OH ⊥ EF

Suy ra: OH // AI // BK

Ta có: OA = OB (= R)

Suy ra: HI = HK

Hay: HE + EI = HF + FK (1)

Lại có: HE = HF (đường kính dây cung) (2)

Xem thêm: Top 40 Dàn ý Tình cảnh lẻ loi của người chinh phụ (hay nhất)

Xem thêm  [SGK Scan] Bài 15. Công suất - Sách Giáo Khoa

Từ (1) và (2) suy ra: IE = KF

Bài 18 trang 159 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O) bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Tính độ dài BC.

Lời giải:

Gọi I là trung điểm của AB

Suy ra: IO = IA = (1/2).OA = 3/2

Ta có: BC ⊥ OA (gt)

Suy ra: góc (OIB) = 90o

Áp dụng định lí Pitago vào tam giác vuông OBI ta có: OB2 = BI2 + IO2

Suy ra: BI2 = OB2 – IO2

Ta có: BI = CI (đường kính dây cung)

Bài 19 trang 159 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O), đường kính AD = 2R. Vẽ cung tâm D bán kính R, cung này cắt đường tròn (O) ở B và C.

a. Tứ giác OBDC là hình gì? Vì sao?

b. Tính số đo các góc CBD, CBO, OBA

c. Chứng minh rằng tam giác ABC là tam giác đều.

Lời giải:

a. Ta có:

OB = OC = R (vì B, C nằm trên (O; R))

DB = DC = R (vì B, C nằm trên (D; R))

Suy ra: OB = OC = DB = DC

Vậy tứ giác OBDC là hình thoi

b. Ta có: OB = OC = BD = R

Bài 20 trang 159 Sách bài tập Toán 9 Tập 1: a. Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN

b. Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho AM = BN. Qua M và N kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD.

Lời giải:

a. Ta có: CM ⊥ CD

DN ⊥ CD

Xem thêm: Công thức Diện tích hình Bình Hành & Cách tính đơn giản 2023

Xem thêm  Tả cô giáo hoặc thầy giáo của em trong một giờ học mà em nhớ nhất

Suy ra: CM // DN

Kẻ OI ⊥ CD

Suy ra: OI // CM // DN

Ta có: IC = ID (đường kính dây cung)

Suy ra: OM = ON (1)

Mà: AM + OM = ON + BN (= R) (2)

Từ (1) và (2) suy ra: AM = BN

b. Ta có: MC // ND (gt)

Suy ra tứ giác MCDN là hình thang

Lại có: OM + AM = ON + BN (= R)

Mà AM = BN (gt)

Suy ra: OM = ON

Kẻ OI ⊥ CD (3)

Suy ra: IC = ID (đường kính dây cung)

Khi đó OI là đường trung bình của hình thang ACDN

Suy ra: OI // MC // ND (4)

Từ (3) và (4) suy ra: MC ⊥ CD, ND ⊥ CD.

Bài 21 trang 159 Sách bài tập Toán 9 Tập 1: Cho đường tròn tâm O, đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH = DK

Lời giải:

Kẻ OM ⊥ CD cắt AD tại N

Ta có: MC = MD (đường kính dây cung)

Hay MH + CH = MK + KD (1)

Ta có: OM // BK (cùng vuông góc với CD)

Hay: MN // BK

Mà: OA = OB (= R)

Suy ra: NA = NK (tính chất đường trung bình của tam giác)

Xem thêm: Hướng Dẫn Đặt Tên Cho Con Năm 2020 – Đồ Cúng Tâm Linh Việt

Lại có: OM // AH (cùng vuông góc với CD)

Hay: MN // AH

Mà: NA = NK (chứng minh trên)

Suy ra: MH = MK (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: CH = DK

Bài 22 trang 159 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O; R) và điểm M nằm bên trong đường tròn.

Xem thêm  Chất nào sau đây tham gia phản ứng tráng bạc? - Luật Hoàng Phi

a. Hãy nêu cách dựng dây AB nhận M làm trung điểm

b. Tính độ dài AB ở câu a biết rằng R = 5cm, OM = 1,4cm

Lời giải:

a. * Cách dựng

– Dựng đoạn OM

– Qua M dựng đường thẳng vuông góc với OM cắt O tại A và B.

Nối A và B ta được dây cần dựng

*Chứng minh

Ta có: OM ⊥ AB ⇒ MA = MB

b. Áp dụng định lí Pitago vào tam giác vuông OMB ta có:

OB2 = OM2 + MB2

Suy ra: MB2 = OB2 – OM2 = 52 – 1,42 = 25 – 1,96 = 23,04

MB = 4,8 (cm)

Vậy AB = 2.MB = 2.4,8 = 9,6 (cm)

Bài 23 trang 159 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O), điểm A nằm bên trong đường tròn, điểm B nằm bên ngoài đường tròn sao cho trung điểm I của AB nằm bên trong đường tròn. Vẽ dây CD vuông góc với OI tại I. Hãy cho biết ACBD là hình gì? Vì sao?

Lời giải:

Ta có: OI ⊥ CD (gt)

Suy ra: IC = ID (đường kính dây cung)

Mà: IA = IB (gt)

Tứ giác ACBD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành.

Bản quyền nội dung thuộc wonderkidsmontessori.edu.vn

Bài viết liên quan

Tri Thức Cộng Đồng chuyên viết luận văn thạc sĩ tiếng Anh
Học Viện PMS – Đơn vị đào tạo 5S-Kaizen mang tính thực tiễn cao
Cách chỉnh độ rộng của dòng và cột trong word
Cách chỉnh độ rộng của dòng và cột trong word
Từ điển Thành ngữ Tiếng Việt – em ngã, chị nâng là gì?
Từ điển Thành ngữ Tiếng Việt – em ngã, chị nâng là gì?
Vật Lí 8 Bài 20: Nguyên tử, phân tử chuyển động hay đứng yên?
Vật Lí 8 Bài 20: Nguyên tử, phân tử chuyển động hay đứng yên?
Bảng chữ cái Tiếng Thái – Gia sư Tâm Tài Đức
Bảng chữ cái Tiếng Thái – Gia sư Tâm Tài Đức
Bộc trực là gì? 6 biểu hiện của người có tính bộc trực – CareerLink
Bộc trực là gì? 6 biểu hiện của người có tính bộc trực – CareerLink
Danh sách các trường THCS ở Hà Nội nên cho con học
Danh sách các trường THCS ở Hà Nội nên cho con học